2.1 เซต
เซต เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
-เซตสระในภาษาอังกฤษ หมายถึง กลุ่มของอังกฤษ a, e, i, o และ u
-เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
-สิ่งที่ในเชตเรียกว่า สมาชิก ( element หรือ members )
การเขียนเซต
การเขียนเซตอาจเขียนได้ 2 แบบ
1 การเขียนซตแบบแจกแจงสมาชิก เขียนสมาชิกทุกตัวลงในเครื่องหมายวงเล็บปีก กา { } และใช้เครื่องหมายจุลภาค ( , ) คั่นระหว่างสมาชิกแต่ละตัว เช่น
-เซตของจำนวนนับที่น้อยกว่า 7 เขียนแทนด้วย {1,2,3,4,5,6,} อ่านเพิ่มเติม
การให้เหตุผลแบ่งได้ 2 แบบดังนี้1. การให้เหตุผลแบบอุปนัย2. การให้เหตุผลแบบนิรนัย 1. การให้เหตุผลแบบอุปนัยการให้เหตุผลแบบอุปนัย เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลาย ๆ ตัวอย่าง มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป หรือคำพยากรณ์ ซึ่งจะเห็นว่าการจะนำเอาข้อสังเกต หรือผลการทดลองจากบางหน่วยมาสนับสนุนให้ได้ข้อตกลง หรือ ข้อความทั่วไปซึ่งกินความถึงทุกหน่วย ย่อมไม่สมเหตุสมผล เพราะเป็นการอนุมานเกินสิ่งที่กำหนดให้ ซึ่งหมายความว่า การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง นั่นคือ จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้ แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย ดังนั้นจึงกล่าวได้ว่าการให้เหตุผลแบบนิรนัยจะให้ความแน่นอน แต่การให้เหตุผลแบบอุปนัย จะให้ความน่าจะเป็นตัวอย่างการให้เหตุผลแบบอุปนัย เช่น เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูก อ่านเพิ่มเติม
4.1จำนวนจริงเซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย II = {1,2,3…}- เซตของจำนวนเต็มลบ เขียนแทนด้วย I- เซตของจำนวนเต็ม เขียนแทนด้วย II = { …,-3,-2,-1,0,1,2,3…}- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม และ b = 0 อ่านเพิ่มเติม
1.1.1ความสัมพันธ์
ในชีวิตประจำวันจะพบสิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ เช่น สินค้ากับราคาสินค้าคนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ของสิ่งสองสิ่งที่มาเกี่ยวข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่ง สำหรับในวิชาคณิตศาสตร์มีสิ่งที่แสดงความสัมพันธ์ดังตัวอย่างต่อไปนี้
พื้นที่ของรูปสามเหลี่ยมใดๆ เท่ากับ ครึ่งหนึ่งของผลคูณของความยาวของฐานและความสูงของรูปสามเหลี่ยม อ่านเพิ่มเติม